{"version":3,"file":"vendors-d56b1406.b149463909b5e91f4e75.bundle.js","mappings":";;;;;;;;;;;;;;;;;;;;;;AAAA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA","sources":["webpack://app/./node_modules/ol/reproj.js"],"sourcesContent":["/**\n * @module ol/reproj\n */\nimport { IMAGE_SMOOTHING_DISABLED } from './renderer/canvas/common.js';\nimport { assign } from './obj.js';\nimport { containsCoordinate, createEmpty, extend, forEachCorner, getCenter, getHeight, getTopLeft, getWidth, } from './extent.js';\nimport { createCanvasContext2D } from './dom.js';\nimport { getPointResolution, transform } from './proj.js';\nimport { solveLinearSystem } from './math.js';\nvar brokenDiagonalRendering_;\n/**\n * @type {Array}\n */\nexport var canvasPool = [];\n/**\n * This draws a small triangle into a canvas by setting the triangle as the clip region\n * and then drawing a (too large) rectangle\n *\n * @param {CanvasRenderingContext2D} ctx The context in which to draw the triangle\n * @param {number} u1 The x-coordinate of the second point. The first point is 0,0.\n * @param {number} v1 The y-coordinate of the second point.\n * @param {number} u2 The x-coordinate of the third point.\n * @param {number} v2 The y-coordinate of the third point.\n */\nfunction drawTestTriangle(ctx, u1, v1, u2, v2) {\n ctx.beginPath();\n ctx.moveTo(0, 0);\n ctx.lineTo(u1, v1);\n ctx.lineTo(u2, v2);\n ctx.closePath();\n ctx.save();\n ctx.clip();\n ctx.fillRect(0, 0, Math.max(u1, u2) + 1, Math.max(v1, v2));\n ctx.restore();\n}\n/**\n * Given the data from getImageData, see if the right values appear at the provided offset.\n * Returns true if either the color or transparency is off\n *\n * @param {Uint8ClampedArray} data The data returned from getImageData\n * @param {number} offset The pixel offset from the start of data.\n * @return {boolean} true if the diagonal rendering is broken\n */\nfunction verifyBrokenDiagonalRendering(data, offset) {\n // the values ought to be close to the rgba(210, 0, 0, 0.75)\n return (Math.abs(data[offset * 4] - 210) > 2 ||\n Math.abs(data[offset * 4 + 3] - 0.75 * 255) > 2);\n}\n/**\n * Determines if the current browser configuration can render triangular clip regions correctly.\n * This value is cached so the function is only expensive the first time called.\n * Firefox on Windows (as of now) does not if HWA is enabled. See https://bugzilla.mozilla.org/show_bug.cgi?id=1606976\n * IE also doesn't. Chrome works, and everything seems to work on OSX and Android. This function caches the\n * result. I suppose that it is conceivably possible that a browser might flip modes while the app is\n * running, but lets hope not.\n *\n * @return {boolean} true if the Diagonal Rendering is broken.\n */\nfunction isBrokenDiagonalRendering() {\n if (brokenDiagonalRendering_ === undefined) {\n var ctx = document.createElement('canvas').getContext('2d');\n ctx.globalCompositeOperation = 'lighter';\n ctx.fillStyle = 'rgba(210, 0, 0, 0.75)';\n drawTestTriangle(ctx, 4, 5, 4, 0);\n drawTestTriangle(ctx, 4, 5, 0, 5);\n var data = ctx.getImageData(0, 0, 3, 3).data;\n brokenDiagonalRendering_ =\n verifyBrokenDiagonalRendering(data, 0) ||\n verifyBrokenDiagonalRendering(data, 4) ||\n verifyBrokenDiagonalRendering(data, 8);\n }\n return brokenDiagonalRendering_;\n}\n/**\n * Calculates ideal resolution to use from the source in order to achieve\n * pixel mapping as close as possible to 1:1 during reprojection.\n * The resolution is calculated regardless of what resolutions\n * are actually available in the dataset (TileGrid, Image, ...).\n *\n * @param {import(\"./proj/Projection.js\").default} sourceProj Source projection.\n * @param {import(\"./proj/Projection.js\").default} targetProj Target projection.\n * @param {import(\"./coordinate.js\").Coordinate} targetCenter Target center.\n * @param {number} targetResolution Target resolution.\n * @return {number} The best resolution to use. Can be +-Infinity, NaN or 0.\n */\nexport function calculateSourceResolution(sourceProj, targetProj, targetCenter, targetResolution) {\n var sourceCenter = transform(targetCenter, targetProj, sourceProj);\n // calculate the ideal resolution of the source data\n var sourceResolution = getPointResolution(targetProj, targetResolution, targetCenter);\n var targetMetersPerUnit = targetProj.getMetersPerUnit();\n if (targetMetersPerUnit !== undefined) {\n sourceResolution *= targetMetersPerUnit;\n }\n var sourceMetersPerUnit = sourceProj.getMetersPerUnit();\n if (sourceMetersPerUnit !== undefined) {\n sourceResolution /= sourceMetersPerUnit;\n }\n // Based on the projection properties, the point resolution at the specified\n // coordinates may be slightly different. We need to reverse-compensate this\n // in order to achieve optimal results.\n var sourceExtent = sourceProj.getExtent();\n if (!sourceExtent || containsCoordinate(sourceExtent, sourceCenter)) {\n var compensationFactor = getPointResolution(sourceProj, sourceResolution, sourceCenter) /\n sourceResolution;\n if (isFinite(compensationFactor) && compensationFactor > 0) {\n sourceResolution /= compensationFactor;\n }\n }\n return sourceResolution;\n}\n/**\n * Calculates ideal resolution to use from the source in order to achieve\n * pixel mapping as close as possible to 1:1 during reprojection.\n * The resolution is calculated regardless of what resolutions\n * are actually available in the dataset (TileGrid, Image, ...).\n *\n * @param {import(\"./proj/Projection.js\").default} sourceProj Source projection.\n * @param {import(\"./proj/Projection.js\").default} targetProj Target projection.\n * @param {import(\"./extent.js\").Extent} targetExtent Target extent\n * @param {number} targetResolution Target resolution.\n * @return {number} The best resolution to use. Can be +-Infinity, NaN or 0.\n */\nexport function calculateSourceExtentResolution(sourceProj, targetProj, targetExtent, targetResolution) {\n var targetCenter = getCenter(targetExtent);\n var sourceResolution = calculateSourceResolution(sourceProj, targetProj, targetCenter, targetResolution);\n if (!isFinite(sourceResolution) || sourceResolution <= 0) {\n forEachCorner(targetExtent, function (corner) {\n sourceResolution = calculateSourceResolution(sourceProj, targetProj, corner, targetResolution);\n return isFinite(sourceResolution) && sourceResolution > 0;\n });\n }\n return sourceResolution;\n}\n/**\n * @typedef {Object} ImageExtent\n * @property {import(\"./extent.js\").Extent} extent Extent.\n * @property {HTMLCanvasElement|HTMLImageElement|HTMLVideoElement} image Image.\n */\n/**\n * Renders the source data into new canvas based on the triangulation.\n *\n * @param {number} width Width of the canvas.\n * @param {number} height Height of the canvas.\n * @param {number} pixelRatio Pixel ratio.\n * @param {number} sourceResolution Source resolution.\n * @param {import(\"./extent.js\").Extent} sourceExtent Extent of the data source.\n * @param {number} targetResolution Target resolution.\n * @param {import(\"./extent.js\").Extent} targetExtent Target extent.\n * @param {import(\"./reproj/Triangulation.js\").default} triangulation Calculated triangulation.\n * @param {Array} sources Array of sources.\n * @param {number} gutter Gutter of the sources.\n * @param {boolean} [opt_renderEdges] Render reprojection edges.\n * @param {boolean} [opt_interpolate] Use linear interpolation when resampling.\n * @return {HTMLCanvasElement} Canvas with reprojected data.\n */\nexport function render(width, height, pixelRatio, sourceResolution, sourceExtent, targetResolution, targetExtent, triangulation, sources, gutter, opt_renderEdges, opt_interpolate) {\n var context = createCanvasContext2D(Math.round(pixelRatio * width), Math.round(pixelRatio * height), canvasPool);\n if (!opt_interpolate) {\n assign(context, IMAGE_SMOOTHING_DISABLED);\n }\n if (sources.length === 0) {\n return context.canvas;\n }\n context.scale(pixelRatio, pixelRatio);\n function pixelRound(value) {\n return Math.round(value * pixelRatio) / pixelRatio;\n }\n context.globalCompositeOperation = 'lighter';\n var sourceDataExtent = createEmpty();\n sources.forEach(function (src, i, arr) {\n extend(sourceDataExtent, src.extent);\n });\n var canvasWidthInUnits = getWidth(sourceDataExtent);\n var canvasHeightInUnits = getHeight(sourceDataExtent);\n var stitchContext = createCanvasContext2D(Math.round((pixelRatio * canvasWidthInUnits) / sourceResolution), Math.round((pixelRatio * canvasHeightInUnits) / sourceResolution));\n if (!opt_interpolate) {\n assign(stitchContext, IMAGE_SMOOTHING_DISABLED);\n }\n var stitchScale = pixelRatio / sourceResolution;\n sources.forEach(function (src, i, arr) {\n var xPos = src.extent[0] - sourceDataExtent[0];\n var yPos = -(src.extent[3] - sourceDataExtent[3]);\n var srcWidth = getWidth(src.extent);\n var srcHeight = getHeight(src.extent);\n // This test should never fail -- but it does. Need to find a fix the upstream condition\n if (src.image.width > 0 && src.image.height > 0) {\n stitchContext.drawImage(src.image, gutter, gutter, src.image.width - 2 * gutter, src.image.height - 2 * gutter, xPos * stitchScale, yPos * stitchScale, srcWidth * stitchScale, srcHeight * stitchScale);\n }\n });\n var targetTopLeft = getTopLeft(targetExtent);\n triangulation.getTriangles().forEach(function (triangle, i, arr) {\n /* Calculate affine transform (src -> dst)\n * Resulting matrix can be used to transform coordinate\n * from `sourceProjection` to destination pixels.\n *\n * To optimize number of context calls and increase numerical stability,\n * we also do the following operations:\n * trans(-topLeftExtentCorner), scale(1 / targetResolution), scale(1, -1)\n * here before solving the linear system so [ui, vi] are pixel coordinates.\n *\n * Src points: xi, yi\n * Dst points: ui, vi\n * Affine coefficients: aij\n *\n * | x0 y0 1 0 0 0 | |a00| |u0|\n * | x1 y1 1 0 0 0 | |a01| |u1|\n * | x2 y2 1 0 0 0 | x |a02| = |u2|\n * | 0 0 0 x0 y0 1 | |a10| |v0|\n * | 0 0 0 x1 y1 1 | |a11| |v1|\n * | 0 0 0 x2 y2 1 | |a12| |v2|\n */\n var source = triangle.source;\n var target = triangle.target;\n var x0 = source[0][0], y0 = source[0][1];\n var x1 = source[1][0], y1 = source[1][1];\n var x2 = source[2][0], y2 = source[2][1];\n // Make sure that everything is on pixel boundaries\n var u0 = pixelRound((target[0][0] - targetTopLeft[0]) / targetResolution);\n var v0 = pixelRound(-(target[0][1] - targetTopLeft[1]) / targetResolution);\n var u1 = pixelRound((target[1][0] - targetTopLeft[0]) / targetResolution);\n var v1 = pixelRound(-(target[1][1] - targetTopLeft[1]) / targetResolution);\n var u2 = pixelRound((target[2][0] - targetTopLeft[0]) / targetResolution);\n var v2 = pixelRound(-(target[2][1] - targetTopLeft[1]) / targetResolution);\n // Shift all the source points to improve numerical stability\n // of all the subsequent calculations. The [x0, y0] is used here.\n // This is also used to simplify the linear system.\n var sourceNumericalShiftX = x0;\n var sourceNumericalShiftY = y0;\n x0 = 0;\n y0 = 0;\n x1 -= sourceNumericalShiftX;\n y1 -= sourceNumericalShiftY;\n x2 -= sourceNumericalShiftX;\n y2 -= sourceNumericalShiftY;\n var augmentedMatrix = [\n [x1, y1, 0, 0, u1 - u0],\n [x2, y2, 0, 0, u2 - u0],\n [0, 0, x1, y1, v1 - v0],\n [0, 0, x2, y2, v2 - v0],\n ];\n var affineCoefs = solveLinearSystem(augmentedMatrix);\n if (!affineCoefs) {\n return;\n }\n context.save();\n context.beginPath();\n if (isBrokenDiagonalRendering() || !opt_interpolate) {\n // Make sure that all lines are horizontal or vertical\n context.moveTo(u1, v1);\n // This is the diagonal line. Do it in 4 steps\n var steps = 4;\n var ud = u0 - u1;\n var vd = v0 - v1;\n for (var step = 0; step < steps; step++) {\n // Go horizontally\n context.lineTo(u1 + pixelRound(((step + 1) * ud) / steps), v1 + pixelRound((step * vd) / (steps - 1)));\n // Go vertically\n if (step != steps - 1) {\n context.lineTo(u1 + pixelRound(((step + 1) * ud) / steps), v1 + pixelRound(((step + 1) * vd) / (steps - 1)));\n }\n }\n // We are almost at u0r, v0r\n context.lineTo(u2, v2);\n }\n else {\n context.moveTo(u1, v1);\n context.lineTo(u0, v0);\n context.lineTo(u2, v2);\n }\n context.clip();\n context.transform(affineCoefs[0], affineCoefs[2], affineCoefs[1], affineCoefs[3], u0, v0);\n context.translate(sourceDataExtent[0] - sourceNumericalShiftX, sourceDataExtent[3] - sourceNumericalShiftY);\n context.scale(sourceResolution / pixelRatio, -sourceResolution / pixelRatio);\n context.drawImage(stitchContext.canvas, 0, 0);\n context.restore();\n });\n if (opt_renderEdges) {\n context.save();\n context.globalCompositeOperation = 'source-over';\n context.strokeStyle = 'black';\n context.lineWidth = 1;\n triangulation.getTriangles().forEach(function (triangle, i, arr) {\n var target = triangle.target;\n var u0 = (target[0][0] - targetTopLeft[0]) / targetResolution;\n var v0 = -(target[0][1] - targetTopLeft[1]) / targetResolution;\n var u1 = (target[1][0] - targetTopLeft[0]) / targetResolution;\n var v1 = -(target[1][1] - targetTopLeft[1]) / targetResolution;\n var u2 = (target[2][0] - targetTopLeft[0]) / targetResolution;\n var v2 = -(target[2][1] - targetTopLeft[1]) / targetResolution;\n context.beginPath();\n context.moveTo(u1, v1);\n context.lineTo(u0, v0);\n context.lineTo(u2, v2);\n context.closePath();\n context.stroke();\n });\n context.restore();\n }\n return context.canvas;\n}\n//# sourceMappingURL=reproj.js.map"],"names":[],"sourceRoot":""}